
G]VIPARATIVE STUDY OF SUBS_S ROTATING FLOW PATYERNS

IN CENIRI_ C[IVIPRESSORS WIq}I VANELESS DIFFUSERS

P. Fr igne*

State University of Gent

9000 - Gent, Belgium

R. Van Den Braen_oussche

yon Karman Institute

1640 - Rhode Saint Gen_se, Belgium

SUMMARY

A comparative experimental investigation of the unstable operating
modes of a centrifugal compressor is made. Hot wire measurements, in
two different compressor configurations, allowed to distinguish between
the different unsteady flow pattern. Impeller and/or diffuser rotating
stall has been observed, depending on the flow conditions. The measu-
red relative rotational speed of this perturbation is cross-checked
with other experimental data and it is shown that the rotational speed
is strongly dependent on the type of rotating stall. The diffuser
absolute inlet flow angle at the onset of diffuser rotating stall
agrees well with the value predicted by an existing stability criterion.

INTRODUCTION

Self excited vibrations of turbomachinery components, due to aero-
dynamic forces, can be divided into two groups. A first one concerns
the vibrations where the destabilizing forces are function of the
whirling motion of the rotor. The initial displacement of the shaft
influences the flow conditions in the labyrinth seals or creates
an asymmetric blade loading on the impeller. The corresponding forces
sustain the initial perturbation because of the negative damping.

A second type concerns the vibrations where the main flow is de-
stabilized by hydrodynamic or viscous forces which are independent of
the resulting mechanical vibration. They are known as rotating stall
and surge. The last ones have also an important influence on compres-
sor performance.

At low pressure levels, the corresponding forces are often too
small to have any significant influence on the shaft vibrations, but
sometimes result in blade failures. However, at high pressure levels
the excitation becomes much larger and very often limits the range of
operation because of vibrational problems.

This paper is limited to the study of the second type of desta-
bilization in centrifugal compressors with vaneless diffusers.

Formerly Research Associate at von Karman Institute.
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Hot wire measurements have been performed in two different com-
pressor configurations in order to investigate the different unsteady
flow pattern.
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SYMBOLS

diffuser width

static pressure rise coefficient

number of stall cells

static pressure

radius

Reynolds number, based on diffuser absolute inlet velocity
and diffuser width

peripheral velocity

absolute velocity

absolute flow angle, measured from meridional plane

blade angle measured from meridional plane

mass flow coefficient

static density

slip factor

absolute angular velocity of stall cells

angular velocity of the impeller

Subscripts

0

I

2

3

C

settling chamber

inducer inlet channel

diffuser inlet

diffuser outlet

critical
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DESCRIPTION OF TEST FACILITY AND INSTRUMENTATION

The experiments have been performed in the open loop test facility
(Fig. la) of the State University of Gent. Mass flow is fed into the
settling chamber by a normalized tube which allows for flow control
and mass flow measurement. Inlet guide vanes can be installed in the
suction pipe if prerotation is required. Flow is discharged at atmos-
pheric pressure after a 180 ° turning at the diffuser exit.

All measurements have been performed with a vaneless diffuser.
Geometrical parameters of the unshrouded impeller (Fig. 2) are listed
in Table I.

Besides the classical pressure and temperature probes, required
for overall performance measurements, four hot wire probes are also
installed. The hot wires are mounted perpendicular to the mean flow
direction. One is installed at impeller inlet (II), one at diffuser
inlet (ID) and two at R/R2 : 1.3 inside the diffuser (MDI and MD2) at
42 ° circumferential distance (Fig. ib). The linearized signals are
visualized on an oscilloscope and processed with a HP 3582A two channel
Fourier spectrum analyser. This allows to define the power spectrum,
coherence function and phase transfer function.

Perturbations rotating in the diffuser will result in periodic
signals at MD1 and MD2 with period T2. Because of the 42 ° difference
in circumferential position there will be a time lag TI which allows
to calculate the number of stall cells i, and the rotational speed us:

i = 360/42 * TI/T2 (i must be integer)

: 2_/(iT2).u s

TEST RESULTS WITHOUT PREROTATION VANES

The first series of measurements have been obtained with an axial

flow at compressor inlet. The overall performances are shown on
figure 3. The static pressure rise is not related to the mass flow
coefficient @2 but to the diffuser inlet flow angle _2- The last
parameter is used here because of its important influence on diffuser
stability and is defined by

tg _2 = _I@2-

The slip factor is calculated from correlations and is checked against
the measured impeller temperature rise. Increasing values of e2
correspond to decreasing mass flow.

The static pressure rise is non dimensionalized by p0U_/2 to
become independent of RPMo

All curves show a maximum at _2 = 76° which coincides with the on-
set of unstable flow. At higher RPM, these curves do not continue to
the left because of surge. At low RPM, surge occurs only at _2 : 87°
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which leaves a large range of flow conditions where unsteady flow can
be observed. The hot wire measurements are therefore made at 2000 RPM

for _I values between 76 ° and 87 ° .

The hot wire traces shown on figure 4a are measured at rotor

inlet (II) and diffuser inlet (ID) for _2 = 76°. The relative ampli-

tude of the oscillations, defined by (Vmax-Vmin)/VRM S, amounts to .14

at rotor inlet and .23 at diffuser inlet. The power spectrum and co-

herence function, shown on figures 4b and 4c, clearly indicate an

instability at 27.2 Hz. Inside the diffuser, at R/R2 = 1.3, the flow

is steady as shown on the power spectrum of probe MD1 (Fig 4d). One

can therefore conclude that these instabilities are due to impeller

rotating stall, which can be explained by the high positive incidence

(12 ° ) at inducer tip for this operating point.

Measurements at _2 = 78 ° (Fig. 5a) do not only show an increase

in amplitude to .37 at impeller inlet (II), but also an extension of

these perturbations downstream inside the diffuser (MD). The hot wire
traces MDI and MD2 (Fig. 5b) have a relative amplitude of .13. The

phase lag between both signals indicates the presence on one stall

cell rotating at 77% of the rotor speed. The power spectrum and co-

herence function of the II and MD signal (Figs. 5c, 5d) reveal a

decrease of the basic frequency to 25.6 Hz and the presence of impor-
tant harmonics at 52 and 77 Hz.

Figures 6a and6b are measured at _2 = 81 ° and indicate a further

increase in amplitude to 200% at rotor inlet (II) and 18% inside the

diffuser (MD). The basic frequency is now 23.2 Hz and _s/_ = .70. The
harmonics have almost disappeared at rotor inlet but are unchanged
inside the diffuser.

Low frequency oscillations completely suppress impeller rotating
stall at _2 = 87 ° • The hot wire traces of figure 7a seem to indicate
that the frequency at rotor inlet (II) is twice the frequency of
oscillations inside the diffuser. However, hot wires read only the
velocity component perpendicular to the wire and are insensitive to a
180 ° change in flow direction. The real flow velocity at rotor inlet
changes sign (return flow) and is indicated by the dashed line. Both
signals are in phase at 6.4 Hz and indicate compressor surge. The
power spectrum on figure 7b shows the presence of several harmonic
frequencies as well at rotor inlet as inside the diffuser.

This series of measurements show only one type of rotating stall,

originating from the rotor. The oscillations are gradually increasing

in amplituae and extending downstream inside the diffuser. They are

due to one stall cell rotating at high relative velocity.

TEST RESULTS WITH INLET PREROTATION VANES

According to a stability criterion, developed by the authors

(Ref. 1), vaneless diffuser rotating stall should occur at _2 = 77 ° •

However, only impeller rotating stall has been observed in previous
experiments. A possible explanation for this disagreement could be
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that diffuser rotating stall is completely suppressed by the impeller
rotating stall if the latter one starts first.

In order to verify this hypothesis, inlet guide vanes have been
installed in the suction pipe, in order to create 60 ° prerotation at
the impeller inlet. Preliminary calculations indicated that this
would delay impeller rotating stall at least to _2 = 82° In this way
a sufficiently broad margin for diffuser rotating stall would be
created.

The overall compressor performance map is shown on figure 8.
Compared to previous results, one can observe a 6° shift to the left

of impeller characteristics. The maximum compressor pressure rise

has slightly decreased because of the prerotation. The diffuser

pressure rise is almost unchanged.

First instabilities are observed in the diffuser at e2 = 77°

(Fig. 9a). The frequency is 17.6 Hz (Fig. 9b) with a coherence of

55% (Fig. 9c). From the 132 ° phase shift between MDI and MD2, one

can calculate that three stall cells are rotating at ms/_ = .176.
These instabilities are not observed at the inducer inlet (Fig. 9d)

and one can therefore conclude that they are due to diffuser rotating
stall.

. These instabilities have a maximum amplitude of .11 at _2 = 78°

but completely disappear at _2 = 800 They suddenly reappear in the

diffuser at _2 = 80°5 with a relative amplitude of .14 and a cohe-
rence of 98%.

With the achieved prerotation, the critical flow angle for impel-

ler rotating stall is predicted at _2 = 82° This is experimentally

verified by the power spectra obtained at _2 = 82°6. The power peak
at 23.2 Hz is measured at rotor inlet and inside the diffuser. The

phase angle of 52 ° indicates that one stall cell rotates at ms/_ =
.673. These results are very similar to impeller rotating stall

observed with zero prerotation. The power peak at 19.2 Hz is observed

only inside the diffuser and the phase angle between MD1 and MD2 indi-

cates that three stall cells are rotating at _s/_ = .192. In analogy
to the measurements at lower _2 values, one can conclude that this is

diffuser rotating stall.

When closing the throttle valve further to _2 = 83°1 , diffuser

rotating stall remains unchanged, but impeller rotating stall

(23.2 Hz) disappears completely (Fig. 11).

A new type of unstable flow, with a frequency of 8.8 Hz is

observed at _2 = 83°6 (Fig. 12a). These instabilities are observed

only in the diffuser and correspond to a second type of diffuser rota-

ting stall. Two stall cells are rotating at _s/_ = 13.2%. These high
and low frequency diffuser rotating stall patterns do not occur simul-

taneously but in a rather intermittent mode. This relative amplitude

increases further to .22 at _2 = 84°7 (Fig. 12b).
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The low frequency oscillations (6.4 Hz), observed at _2 = 86°,

are in phase and due to compressor surge. Rotating stall has disap-

peared at this point.

COMPARISON OF THE TWO TEST SERIES

Impeller rotating stall can be observed at impeller inlet and

inside the diffuser. In both test series, the onset of this type of

stall coincides with a 12 ° positive incidence at impeller tip. Pre-

rotation therefore allows to delay this type of instability to lower
mass flow coefficients.

Diffuser rotating stall can only be observed in the diffuser and

starts at _2 = 77 ° This value will be compared to other data in the

next chapter.

Both types of rotating stall can exist simultaneously if diffuser

rotating stall occurs first. This absolute frequency and amplitude

is of the same order of magnitude and measurements with one single

probe do not allow to distinguish between them. However, the relative

rotational speed is quite different as shown in figure 13.

Impeller rotating stall has a relative rotational speed of about

.7 and this velocity seems to be unaffected by prerotation. The rela-

tive rotational speed of diffuser rotating stall is of the order of

.10 to .20 only. This difference is in agreement with experimental

observations of Lenneman & Howard (Ref. 2), Misuki et al. (Ref. 3)

and Abdelhamid (Ref. 4). This difference could therefore be used to

distinguish between impeller and diffuser rotating stall. However,

the definition of relative rotational speed not only requires to

measure the absolute frequency but also the phase difference between
two circumferential positions.

THEORETICAL PREDICTIONS OF VANELESS DIFFUSER

ROTATING STALL

Several stability criteria for vaneless diffusers have been

developed and published in the literature. They are based on dif-

ferent assumptions and result in contradictory conclusions.

The stability criterion for vaneless diffusers of C. Rodgers

(Ref. 5) is based on theoretical considerations concerning variation

of Cp in function of _2- The critical value of _2c, separating the
zone of stable operation from the unstable zone, is function of the

non dimensionalized diffuser width b2/R2 and radius ratio R3/R 2.

This conclusion is similar to the one obtained by W. Jansen

(Ref. 6). His criterion is based on detailed calculations of the

viscous flow in vaneless diffusers. Besides diffuser width (b2/R2),

radius ratio (R3/R2) and flow angle (_2), stability is now also a func-

tion of the Reynolds number. Both theories suggest that the critical

flow angle _2c is decreasing for decreasing diffuser width. This
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would mean that for a given impeller, an unstable vaneless diffuser

cannot always be stabilized by decreasing the diffuser width.

A similar but more precise calculation by Senoo (Ref. 7), however,

results in a criterion which shows an opposite trend in terms of _2c
as a function of diffuser width. The critical flow angle is now

increasing for decreasing diffuser width. An unstable diffuser can
therefore be stabilized by decreasing diffuser width. This theory

also allows to draw important conclusions in terms of diffuser radius

ratio R3/R 2 and about the influence of non uniform flow at diffuser
inlet.

The stability criterion of A. Abdelhamid (Ref. 8) is based on

rotor-diffuser interaction and does not account for viscous effects.

This criterion relates stall operation to the pressure and tangential

velocity fluctuations non dimensionalized by radial velocity fluctua-

tions. This criterion is not easily applicable and stability is inde-

pendent of diffuser width.

In order to eliminate the contradiction between the different

criteria, the authors (Ref. i) have performed some unsteady flow

measurements on different impeller-diffuser combinations. These

results and other experimental data from the literature allowed to

derive the following correlation. All values of _3c fall within a

relatively narrow band as shown on figure 14 after they have been

corrected for Reynolds number influence according to figure 15.

Points i to 5 are experimental data obtained by the authors. Points

6 to 16 are derived from published data.

These experimental data indicate an increase of _3 for decreasing
diffuser width and agree very well with the predictionsCof Senoo. His

theoretical results do not indicate an influence of Reynolds number on

diffuser stability for values of b2/R 2 < .10. However, the experimen-

tally observed variation of _2c in function of Reynolds number is in
= 104

agreement with the predictions of Jansen (A_ 2 = 6 ° = between Reb2

and Reb2 = i05).

The flow angles 1 to 16, are calculated from measured temperature

rise and slip factor correlations. Therefore, some doubt could exist

about the precision by which these angles are defined. Some special

tests have been performed in order to evaluate this error. They are

made for one impeller-diffuser combination at two different Reynolds

numbers. Flow angles at diffuser inlet are measured by a crossed hot

wire. The experimental values shown by points 17 and 18 are already

corrected for Reynolds number influence.

The observed differences with the theoretical curve are within an

acceptable tolerance and therefore provide an additional verification
of this correlation.

Point 19 is the value obtained from the present test series and

confirms the stability limit for diffuser rotating stall.
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CONCLUSION

Measurements described in this paper allow to distinguish between
impeller or diffuser rotating stall. The onset of impeller rotating
stall can be related to inducer incidence and the relative rotational
speed is about .70. Diffuser rotating stall is a function of diffuser
inlet air angle and Reynolds number and has a relative rotational speed
of .i to .2.

These experiments provide a criterion to distinguish between both
phenomena and indicate which part of the compressor should be modified
to achieve stable operation.

Flow conditions at the onset of diffuser rotating stall have been

compared with a criterion for diffuser stability and agree very well.
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TABLE I. - GEOMETRICAL CHARACTERISTICS OF THE COMPRESSOR

tip

RI = .095 b3 = .016 m

hub

R I = .054 m N = 20

tip

R2 = .208 m BI = 50 °

hub

R3 = .400 m 81 = 32 °

• 0 °b2 = 016 m _2 =
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